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Abstract

The dynamics of deterministic and stochastic discrete-time epidemic models are analyzed and compared.
The discrete-time stochastic models are Markov chains, approximations to the continuous-time models.
Models of SIS and SIR type with constant population size and general force of infection are analyzed, then
a more general SIS model with variable population size is analyzed. In the deterministic models, the value
of the basic reproductive number R0 determines persistence or extinction of the disease. If R0 < 1, the
disease is eliminated, whereas if R0 > 1, the disease persists in the population. Since all stochastic models
considered in this paper have ®nite state spaces with at least one absorbing state, ultimate disease extinction
is certain regardless of the value of R0. However, in some cases, the time until disease extinction may be
very long. In these cases, if the probability distribution is conditioned on non-extinction, then when R0 > 1,
there exists a quasi-stationary probability distribution whose mean agrees with deterministic endemic
equilibrium. The expected duration of the epidemic is investigated numerically. Ó 2000 Elsevier Science
Inc. All rights reserved.
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1. Introduction

The extinction behavior exhibited by stochastic population models is frequently not charac-
teristic of their deterministic analogs. Even the simple stochastic exponential growth model has
a ®nite probability of extinction (see e.g., [1]). It is the goal of this investigation to examine
the relationship between some stochastic and deterministic epidemic models. In particular,
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deterministic and stochastic SIS and SIR models with constant population size and general force
of infection and SIS models with variable population size are analyzed and compared. The models
are formulated in terms of discrete-time approximations to the continuous-time models. In the
deterministic case, the model is formulated as a system of di�erence equations and in the sto-
chastic case, the model is a Markov chain.

Some of the ®rst analyses of stochastic and deterministic continuous-time epidemic models are
due to Bailey [2] and Bartlett [3]. The Reed-Frost and Greenwood models are probably the most
well-known discrete-time stochastic epidemic models [2]. In these Markov chain models, it is
assumed that the discrete-time interval corresponds to the length of the incubation period and the
infectious period is assumed to have length zero. The contact process depends on the binomial
distribution and hence, these models are referred to as chain-binomial models. Zero, one, or more
than one infection may take place during the ®xed time interval. Some extensions of the Reed-
Frost model are discussed in [4] and applied to diseases such as polio and in¯uenza. Ackerman et
al. [4] performed extensive computer simulations of the epidemic models and studied the impact of
various vaccination strategies.

Continuous and discrete-time stochastic SI models were analyzed by West and Thompson [5]
and their behavior compared to the analogous deterministic models. In the SI model, the sus-
ceptible proportion eventually converges to zero; the entire population becomes infected. West
and Thompson [5] showed that deterministic and stochastic SI models have much di�erent
convergence behavior when the size of the susceptible population is varied and that the behavior
of the continuous and discrete-time stochastic models agree when the time steps are small.

Jacquez and O'Neill [6] and Jacquez and Simon [7] compared the behavior of a continuous-time
stochastic SI epidemic model with recruitment and deaths to the analogous deterministic model.
The extinction behavior of the stochastic model was demonstrated, a behavior not possible in the
analogous deterministic models. However, when the probabilities in the stochastic model were
conditioned on non-extinction, the deterministic and stochastic models were more closely related;
a quasi-stationary state exists in the stochastic model whose mean is given by the deterministic
endemic equilibrium.

Quasi-stationary distributions in discrete-time Markov chains were ®rst studied by Seneta and
Vere-Jones [8] and in continuous-time by Darroch and Seneta [9]. In an epidemic setting, quasi-
stationary distributions in continuous time were ®rst studied by Kryscio and Lef�evre [10]. Re-
cently, N�asell analyzed the quasi-stationary distribution for a continuous-time stochastic SIS
model with no births and deaths [11,12] and continuous-time stochastic SIR models with births
and deaths [13]. He showed that the quasi-stationary distribution has di�erent forms depending
on the value of R0 and its relationship to N, the total population size. Three di�erent parameter
regions determine the form of the quasi-stationary distribution. When R0 is less than 1, the
distribution is approximately geometric and when R0 is greater than 1, the distribution is ap-
proximately normal. However, there exists a transition region when R0 is near 1, where the form
of the distribution is more complex. The time to disease extinction is also determined by these
three regions [13]. We investigate the form of the probability distribution for the number of in-
fectives for our discrete-time models and note that the quasi-stationary distributions are ap-
proximately normal when R0 > 1.

Due to the generality of the force of infection, the discrete-time deterministic and stochastic
models in this investigation are new formulations. The stochastic formulations are more general
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than the models of West and Thompson [5] and N�asell [11±13] and are more closely tied to the
deterministic models than are the Reed-Frost models. If the time step is chosen su�ciently small,
then the discrete-time deterministic and stochastic models approximate the behavior of the con-
tinuous-time models. In particular, there is agreement between the behavior shown in special cases
of our models and in the continuous-time stochastic models of Jacquez and O'Neill [6], Jacquez
and Simon [7], and N�asell [11±13].

It is assumed that the time step is su�ciently small so that only one change in state is possible
during the time step. A change may be either a birth or death of a susceptible or infected indi-
vidual, recovery of an infected individual, or an infection of a susceptible individual. The tran-
sition probabilities in our models approximate the Poisson process generally applied in
continuous-time models [14]. The probability of each event depends only on their state at the
current time interval; thus, making the stochastic processes Markovian. The discrete-time sto-
chastic models are formulated as Markov chains and in the simple case of an SIS model with
constant population size, the entire transition matrix is given.

In the following sections, three models are discussed: SIS model with constant population size,
SIR model with constant population size, and SIS model with variable population size. In each
section, ®rst, a summary and analysis of the dynamics of the deterministic model are given.
Second, the corresponding stochastic model is formulated, analyzed, and compared to the de-
terministic model. The probability an epidemic occurs, the quasi-stationary distribution, the
mean, the quasi-stationary mean, and the mean duration of the epidemic are discussed. Third,
numerical results from the deterministic and stochastic simulations are presented and discussed.

2. SIS model with constant population size

2.1. Deterministic SIS

The discrete-time deterministic SIS model has the form

S�t � Dt� � S�t��1ÿ k�t�Dt� � �bDt � cDt�I�t�; �1�
I�t � Dt� � I�t��1ÿ bDt ÿ cDt� � k�t�DtS�t�;

where t � nDt; n � 0; 1; 2; . . . ; Dt is a ®xed time interval (e.g., 1 h, one day), S�0� > 0; I�0� > 0 and
S�0� � I�0� � N . It is assumed that the parameters are positive, a > 0;b > 0 and c > 0. It follows
that S�t� � I�t� � N for all time; the total population size remains constant. The function k�t� is
the force of infection (number of contacts that result in infection per susceptible individual per
unit time), bDt is the number of births or deaths per individual during the time interval Dt
(number of births � number of deaths), and cDt is the removal number (number of individuals
that recover in the time interval Dt�. Individuals recover but do not develop immunity, they are
immediately susceptible. In addition, it is assumed that there are no deaths due to the disease, no
recruitment, and no vertical transmission of the disease (all newborns are susceptible). Since births
can be combined with recoveries, c0 � b� c, model (1) is equivalent to an SIS model without any
births or deaths.

Model (1) generalizes epidemic models considered in [15] through the form of the force of
infection. In [15], the force of infection was assumed to have the form
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k�t� � a
N

I�t�; �2�

where a is the contact rate, the number of successful contacts made by one infectious individual
during a unit time interval. In this case, the incidence rate (number of new cases per unit time) k�t�S�t�
is referred to as the standard incidence rate [16]. When the population size is constant, the standard
incidence has the same form as the mass action incidence rate: constant I�t�S�t�. Another form for the
force of infection arises from the Poisson distribution. The ratio l � aIDt=N is the average number
of infections per susceptible individual in time Dt. The probability of k successful encounters re-
sulting in a susceptible individual becoming infective is assumed to follow a Poisson distribution:

p�k� � exp�ÿl�lk

k!
:

Only one successful encounter is necessary for an infection to occur; therefore, when there are no
successful encounters, the expression

p�0� � exp�ÿl� � exp

�
ÿ aDt

N
I
�

represents the probability that a susceptible individual does not become infective. The number of
susceptibles that do not become infective in time Dt is S�t� exp�ÿaDtI=N� and the number of
susceptibles that do become infective is S�t��1ÿ exp�ÿaDtI=N��. Thus, another form for the force
of infection k�t�Dt is

1ÿ exp

�
ÿ aDt

N
I�t�
�
: �3�

The force of infection in (3) was applied to discrete-time epidemic models studied by Cooke et al.
[17]. The force of infection in (2) can be seen to be a linear approximation to the one given in (3).
Other forms for the force of infection are discussed by Hethcote [16].

Several general assumptions are made regarding the force of infection which includes the
particular forms considered above:

(i) 0 < k�t� � k�I�t��6 aI�t�=N for I 2 �0;N �.
(ii) k�I� 2 C2�0;N �;dk�I�=dI > 0; and d2k�I�=dI26 0 for I 2 �0;N �.
(iii) k�I� jI�0� 0 and k0�I� jI�0� a=N .
(iv) 0 < �b� c�Dt6 1 and 0 < aDt6 1.

The above assumptions imply that the force of infection increases with the number of infectives at
a decreasing rate and is bounded above by a linear function of the number of infectives. The
incidence rate is bounded above by the standard incidence rate of infection. Conditions (i)±(iv) are
su�cient to guarantee non-negative solutions and asymptotic convergence to an equilibrium.
However, they are not necessary conditions, for example, less restrictive assumptions on aDt
guarantee convergence to an equilibrium in the case of (2) [15]. In the analogous stochastic
model, even more restrictive conditions will be put on the parameters to guarantee that the
transition probabilities are true probabilities.

Model (1) with the force of infection given by (2) was analyzed by Allen [15] and the one with
force of infection (2) by Cooke et al. [17] and Sumpter [18]. For the more general model (1), it is
straightforward to show that conditions (i) and (iv) imply solutions are non-negative.
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The basic reproductive number R0 determines asymptotic behavior of (1) and is expressed in
terms of the model parameters as

R0 � a
b� c

:

The basic reproductive number is de®ned as the average number of secondary infections caused
by one infective individual during his/her infective period in an entirely susceptible population
[19].

Theorem 1. (i) If R06 1; then solutions to (1) approach the disease-free equilibrium
lim
t!1

I�t� � 0; lim
t!1

S�t� � N :

(ii) If R0 > 1, then solutions to (1) approach a unique positive endemic equilibrium

lim
t!1

I�t� � �I > 0; lim
t!1

S�t� � �S > 0:

Proof. Denote the right side of I�t � Dt� in (1) by g�I�
g�I� � I�1ÿ bDt ÿ cDt� � k�I�Dt�N ÿ I�:

Note that

g0�I� � 1ÿ bDt ÿ cDt � k0�I�Dt�N ÿ I� ÿ k�I�Dt;

g00�I� � k00�I�Dt�N ÿ I� ÿ 2k0�I�Dt:

Since k00�I�6 0 and k0�I� > 0 for I 2 �0;N �, it follows that g00�I� < 0 for I 2 �0;N �.
For case (i), where R06 1; g�0� � 0 and g0�0�6 1. Since g00�I� < 0; g0�I� < 1 or

g�I� < I for I 2 �0;N �. It follows that fI�t�g is a strictly decreasing sequence bounded below by
zero and must approach a ®xed point of g on �0;N �. The only ®xed point of g on �0;N ] is 0; hence,
limt!1 I�t� � 0.

For case (ii), where R0 > 1, it shown that there exists a unique �I > 0 such that
g��I� � �I; g�I� > I for I 2 �0; �I� and g�I� < I for I 2 ��I;N �. In this case, g�0� � 0; g�N� < N , and
g0�0� > 1. Thus, there exists at least one ®xed point �I > 0; g��I� � �I. Let �I be the smallest positive
®xed point, then g�I� > I for I 2 �0; �I�. It follows that g0��I�6 1. Since g00�I� < 0; g0�I� < g0��I�
6 1 for I 2 ��I ;N �. Integration of the last inequality over the interval ��I ; I � shows that
g�I� < I for I > �I. Thus, g has a unique positive ®xed point �I .

The possibility of two-cycles, g�I1� � I2 and g�I2� � I1 is ruled out by showing that
1� g0�I� > 0 for I 2 �0;N � [20]. If I1 < I2; I1; I2 2 �0;N�; then

0 <

Z I2

I1

�1� g0�I��dI � I2 ÿ I1 � g�I2� ÿ g�I1� � 0;

a contradiction. Now, for I 2 �0;N�; 1� g0�I� > 1ÿ k�I�Dt P 1ÿ aDtI=N P 1ÿ aDt P 0. In
addition, McCluskey and Muldowney [20] proved that the condition 1� g0�I� 6� 0 implies
non-existence of any m-cycle for m > 1. A result of Cull [21] can be applied. The di�erence
equation I�t � Dt� � g�I�t�� is a population model as de®ned by Cull [21]: g has a unique
positive ®xed point �I > 0 such that g�I� > I for I 2 �0; �I� and g�I� < I for I 2 ��I;N �; g has a
unique maximum, and is strictly increasing before the maximum and strictly decreasing after
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the maximum. The non-existence of two-cycles for the population model I�t � Dt� � g�I�t��
implies global stability of �I (Theorem 1, p. 143, [21]). �

The value of the endemic equilibrium depends on the form of the force of infection. With the
force of infection given by (2), the endemic equilibrium is

�I � N�1ÿ 1=R0�;
which agrees with the analogous continuous-time model. With the force of infection (3), the
endemic equilibrium is the positive implicit solution of

exp
ÿaDt

N
�I

� �
� N ÿ �1� bDt � cDt��I

N ÿ �I
:

2.2. Stochastic SIS

2.2.1. Model
The discrete-time stochastic SIS model is a Markov chain with ®nite state space. The corre-

sponding continuous-time model is a Markov jump process with the jumps forming a Markov
chain. In the discrete-time model, it is assumed that at most one event occurs in the time period Dt,
either an infection, birth, death, or recovery which depends only on the values of the state
variables at the current time. Since the population size remains constant, a birth and death must
occur simultaneously.

Let I and S denote random variables for the number of infectives and susceptibles, respec-
tively, in a population of size N. The random variable I is integer-valued with state probabilities
pi�t� � ProbfI�t� � ig for i 2 f0; 1; . . . ;Ng and time t 2 f0;Dt; 2Dt; . . .g. Let the probability of a
new infective in time Dt be PiDt � k�i�Dt�N ÿ i�; where k�i� denotes the force of infection, e.g., in
case (2), k�i� � ai=N . If i 62 �0;N �, then Pi � 0: Let the probability of recovery or death in time Dt
be �b� c�iDt. Since I has a ®nite state space, in Refs. [6,7], the N in case (2) is replaced by
s� iÿ 1, then s=�s� iÿ 1� is the proportion of susceptibles that can be infected by one infective.
However, in the models considered here, it is assumed that s=�s� iÿ 1� � s=N � �N ÿ i�=N .
Thus, the transition probabilities for the SIS model are

ProbfI�t � Dt� � i� 1 j I�t� � ig � PiDt;

ProbfI�t � Dt� � iÿ 1 j I�t� � ig � �b� c�iDt:

The probabilities pi�t� satisfy the following di�erence equations:

pi�t � Dt� � piÿ1�t�Piÿ1Dt � pi�1�t��b� c��i� 1�Dt

� pi�t��1ÿPiDt ÿ biDt ÿ ciDt��;
p0�t � Dt� � p0�t�;

where i � 1; . . . ;N and pi�t� � 0 for i 62 f0; 1; . . . ;Ng:
The above transition probabilities approximate the transition probabilities in a continuous-

time Markov jump process, where the transition probabilities follow a Poisson process and the
time between jumps is given by an exponential distribution with mean 1=�Pi � �b� c�i�. The
probability of recovery or death of an infective in the continuous-time model satis®es
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ProbfI�t � Dt� � iÿ 1 j I�t� � ig � �b� c�iDt � o�Dt�:
If Dt! 0, the continuous-time model is obtained. For Dt su�ciently small, the discrete-time
process assumes that the transition probability is given by �b� c�iDt.

The di�erence equations for the discrete-time model can be expressed in matrix form with the
de®nition of the N � 1� N � 1 transition matrix. Let

T �

1 �b� c�Dt 0 0 � � � 0
0 1ÿP1Dt ÿ �b� c�Dt 2�b� c�Dt 0 � � � 0
0 P1Dt 1ÿP2Dt ÿ 2�b� c�Dt 3�b� c�Dt � � � 0
� � � � � � � �
0 0 0 0 � � � N�b� c�Dt
0 0 0 0 � � � 1ÿ N�b� c�Dt

0BBBBBB@

1CCCCCCA:
and p�t�T � �p0�t�; p1�t�; . . . ; pN�t��. The probability density for I satis®es p�t � Dt� � Tp�t�.

To ensure that the elements of T are probabilities it is required that

PiDt � �b� c�iDt6 1:

The following restrictions on the parameters are su�cient to guarantee that the elements of T are
less than 1:

N�a� b� c�2Dt6 4a if R0 > 1 and �b� c�NDt6 1 if R06 1: �4�
These restrictions are satis®ed if Dt is su�ciently small. Note that they are stronger conditions
than those imposed in the deterministic model.

Matrix T is a stochastic matrix with a single absorbing state, the zero state. From the theory of
Markov chains, it follows that limt!1 p0�t� � 1 [14]. Eventually, there are no infectives in the
population, regardless of the threshold value R0. However, for R0 > 1; it may take a long time for
the disease to be completely eliminated. For the continuous-time stochastic SIS model without
births and standard incidence, it has been shown by Kryscio and Lef�evre [10] and N�asell [11,12]
that the time until absorption increases exponentially in N as N approaches in®nity when R0 > 1.

2.2.2. Quasi-stationary distribution
A closer relationship between the stochastic and deterministic models can be seen through

examination of another probability distribution referred to as the quasi-stationary probability
distribution. De®ne

qi�t� � pi�t�
1ÿ p0�t� ;

and q�t�T � �q1�t�; q2�t�; . . . ; qN �t��, where i � 1; . . . ;N . The probability q is conditioned on non-
extinction. The quasi-stationary distribution has been studied in continuous-time stochastic SI,
SIS, and SIR models with standard incidence of infection [6,7,11±13].

The di�erence equations for qi can be shown to satisfy

qi�t � Dt��1ÿ �b� c�q1�t�Dt� � qiÿ1�t�Piÿ1Dt � qi�1�t��b� c�Dt�i� 1�
�qi�t��1ÿPiDt ÿ �b� c�iDt�; �5�

where i � 1; . . . ;N and qi�t� � 0 if i 62 �1;N �. This equation agrees with the di�erence equation for
the probability function p with the exception of the factor �1ÿ �b� c�q1�t�Dt�.
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A time-independent solution of (5) is a stationary or equilibrium solution,
q�T � �q�1; q�2; . . . ; q�N �. It can be seen that a stationary solution satis®es the eigenvalue equation,
Tx� � dx�, where x�T � �ÿ1; q�1; . . . ; q�N� and d is the eigenvalue �1ÿ �b� c�q�1Dt�. A similar rela-
tionship was shown by Jacquez and Simon [7] and N�asell [11,12] for the continuous-time sto-
chastic SIS model with standard incidence. After simpli®cation, the matrix equation, �T ÿ I�x�=Dt
� ÿ�b� c�q�1x�; Dt 6� 0, is the same as the matrix equation satis®ed by the continuous-time
model. N�asell describes an iterative procedure for calculating the quasi-stationary distribution.

Two approximations to the quasi-stationary distribution can be derived for q� which also agree
with the continuous-time approximations [7,10±12]. One approximation assumes there is no de-
crease in the number of infectives when I�t� � 1. This ®rst approximation ~q is the positive
eigenvector associated with eigenvalue one of the reduced stochastic matrix ~T ; the ®rst row and
®rst column of T are deleted and �b� c�Dt is set to 0 in the second row and second column of T:

~T �

1ÿP1Dt 2�b� c�Dt 0 � � � 0
P1Dt 1ÿP2Dt ÿ 2�b� c�Dt 3�b� c�Dt � � � �
� � � � � � �
0 0 0 � � � N�b� c�Dt
0 0 0 � � � 1ÿ N�b� c�Dt

0BBBB@
1CCCCA:

Matrix ~T is a transition matrix of a regular Markov chain. The eigenvector ~q is the stationary
distribution of ~T . The components of ~q can be shown to equal the following expressions:

~qn � ~q1

Pnÿ1Pnÿ2 � � �P1

n!�b� c�nÿ1
; n � 2; . . . ;N ; 1 �

XN

i�1

~qn:

In the special case of standard incidence (2), the formulas for the approximate quasi-stationary
distribution simplify to those given by the continuous-time model [7,10±12]:

~qn � ~q1

�N ÿ 1�!
n�N ÿ n�!

R0

N

� �nÿ1

; n � 2; . . . ;N ;

~q1 �
XN

k�1

�N ÿ 1�!
k�N ÿ k�!

R0

N

� �kÿ1
" #ÿ1

: �6�

A second approximation to the quasi-stationary distribution assumes

ProbfI�t � Dt� � iÿ 1 j I�t� � ig � �b� c��iÿ 1�Dt:

In this second approximation, the approximate quasi-stationary distribution again satis®es
~T ~q � ~q, where ~q is the stationary distribution of the regular Markov chain and

~T �

1ÿP1Dt �b� c�Dt 0 � � � 0
P1Dt 1ÿP2Dt ÿ �b� c�Dt 2�b� c�Dt � � � 0
� � � � � � �
0 0 0 � � � �N ÿ 1��b� c�Dt
0 0 0 � � � 1ÿ �N ÿ 1��b� c�Dt

0BBBB@
1CCCCA:

In the case of standard incidence, the stationary distribution for this second approximation is
given by
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~qn � ~q1

�N ÿ 1�!
�N ÿ n�!

R0

N

� �nÿ1

; n � 2; . . . ;N ;

~q1 �
XN

k�1

�N ÿ 1�!
�N ÿ k�!

R0

N

� �kÿ1
" #ÿ1

: �7�

The approximate quasi-stationary distributions, ~q, given by (6) and (7) with the quasi-stationary
distribution q� calculated via the implicit relation �T ÿ I�x�=Dt � ÿ�b� c�q�1x�, are graphed in
Figs. 1 and 2 for N � 50 and R0 � 1:5; 2; and 3. For R0 � 2 and 3, the distributions agree

Fig. 1. The quasi-stationary probability distribution and the approximate distribution given by (6) when N � 50 and

R0� 1.5, 2, and 3.

Fig. 2. The quasi-stationary probability distribution and the approximate distribution given by (7) when N � 50 and

R0� 1.5, 2, and 3.
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reasonably well with the quasi-stationary distribution which assumes an approximate normal
shape. However, for smaller values of N and R0 small, the approximations are not as good and
the distribution may not have a normal shape [11,12]. Also, note that as R0 increases, the variance
of the quasi-stationary distribution decreases.

2.2.3. Mean and quasi-stationary mean
The mean of the probability distributions of p and q satisfy

m�t� �
XN

i�0

ipi�t�; m��t� �
XN

i�1

iqi�t�:

Applying the di�erence equations for p and q, another set of di�erence equations for the mean,
m�t�, and quasi-stationary mean, m��t�, can be derived:

m�t � Dt� ÿ m�t� �
XN

i�0

PiDt
i

�
ÿ bDt ÿ cDt

�
ipi�t� � �b� c�Dt�R0n�t� ÿ 1�m�t�; �8�

m��t � Dt��1ÿ �b� c�q1�t�Dt� ÿ m��t� � �b� c�Dt�R0n
��t� ÿ 1�m��t�;

where

n�t� �
PN

i�0 pi�t�Pi

a
PN

i�0 ipi�t�
and n��t� �

PN
i�1 qi�t�Pi

a
PN

i�1 iqi�t�
:

Note that Pi=i6 as=N ; thus, n�t� and n��t� are strictly less than 1.
The asymptotic behavior of the mean, m�t�, depends on the basic reproductive number, R0.

When R06 1, it follows from (8) that the mean m�t� of the stochastic process is strictly decreasing,
bounded below by zero, and therefore, must approach an equilibrium. Since the only non-neg-
ative equilibrium for m�t� is 0, m�t� approaches 0. When R0 > 1; however, the mean m�t� has an
additional steady-state given by

n�t� � 1

R0

:

In the particular case of (2), where Pi � ais=N , the above expression can be written as

m�t� N 1

��
ÿ 1

R0

�
ÿ m�t�

�
� r2�t�;

where r2�t� is the variance. The deterministic endemic equilibrium is �I � N�1ÿ 1=R0�. Hence, the
above inequality shows that when the mean of the stochastic process is approximately constant, it
is less than the deterministic equilibrium.

The mean of the distribution of q� is calculated for various values of N and R0 in Table 1 and is
compared to the deterministic endemic equilibrium �I. There is closer agreement between the quasi-
stationary mean of the stochastic process and the deterministic endemic equilibrium when R0 and
N are large. The agreement is poorer when R0 is small. Also, note the quasi-stationary mean lies
below the endemic equilibrium.
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2.2.4. Relation to a random walk
If the population size N is su�ciently large, initially, the nonlinear stochastic process can be

approximated by a random walk on [0, 1) with an absorbing barrier at zero. If p denotes the
probability of moving to the right and q the probability of moving to the left, then the probability
of eventual absorption beginning from position a > 0 is

q
p

� �a

if q < p and 1 if q P p:

[14]. If p and q are interpreted in terms of the epidemic model, then p denotes the probability of
becoming infected, PiDt, and q the probability of recovery or death, �b� c�iDt. When there are a
small number of infectives, s � N and Pi � ai, so that the probability of no epidemic is
�q=p�a � ��b� c�=a�a, or approximately

1

R0

� �a

if R0 > 1 and 1 if R06 1;

where a is the initial number of infectives. The numerical examples show that the value of p0�t�
(probability of no epidemic) approaches �1=R0�a at the outset of the epidemic.

2.2.5. Expected duration of the epidemic
Let sj be the probability distribution for the time to extinction beginning with j infectives. A

system of di�erence equations for the expected duration of the epidemic, E�sj�, for the discrete-
time model takes the form

E�sj� � Dt � j�b� c�DtE�sjÿ1� �PjDtE�sj�1�
� �1ÿPjDt ÿ �b� c�jDt�E�sj�;

E�s1� � Dt �P1DtE�s2� � �1ÿP1Dt ÿ �b� c�Dt�E�s1�
for j � 2; . . . ;N . Assuming that Dt 6� 0, the system above can be expressed in the same form as the
continuous-time SIS model [12]:

E�sj� � 1

Pj � j�b� c� �
Pj

Pj � j�b� c�E�sj�1� � j�b� c�
Pj � j�b� c�E�sjÿ1�;

E�s1� � 1

P1 � �b� c� �
P1

P1 � �b� c�E�s2�
�9�

for j � 2; . . . ;N . This system of linear equations can be solved explicitly for E�sj� [1,22]. It was
shown for the continuous-time SIS model with standard incidence that, when R0 > 1, the ex-
pected duration of the epidemic increases exponentially in N [10±12]. This exponential increase in
the expected duration can be observed in the numerical examples in the next section.

Table 1

The quasi-stationary mean m� and the deterministic equilibrium �I ; �m�=�I�
N R0 � 3 R0 � 2 R0 � 1.5

25 16.09/16.67 11.27/12.5 7.26/8.33

50 32.80/33.33 23.83/25 14.48/16.67
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2.3. Numerical examples

Several numerical examples are simulated with various values for the population size, N, the
initial number of infectives, I, and the basic reproductive number, R0. In all the simulations, the
incidence rate has the form of the standard incidence rate of infection, k�t�S�t� � aI�t�S�t�=N .

In the ®rst example, the behavior of individual sample paths of the stochastic model are
compared to the deterministic solution. Three sample paths of the stochastic model are graphed
against the corresponding deterministic solution in Fig. 3. Initially, one infective is introduced into

Fig. 3. Three sample paths of stochastic SIS model are graphed with the deterministic solution when R0 � 2, I(0)� 1,

S(0)� 99, a � 1:6, b � 0:4 � c, and Dt � 0:01:

Fig. 4. The probability function, p(t), for the stochastic SIS model is graphed when R0 � 0:9, I(0) � 1, S(0) � 99,

a� 0.9, b� 0.5� c, and Dt� 0.01.
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a population of size N � 100 with R0 � 2. The time step is Dt � 0:01 and the Time axis is the
number of time steps, e.g., Time� 1000 means 1000 time steps and thus, an actual total time of
1000Dt � 10. One of the sample paths reaches 0 very quickly and the other two sample paths vary
about the deterministic solution.

The probabilities for the number of infectives at each time step Dt can be obtained directly from
the equation p�t � Dt� � Tp�t�. In Figs. 4±7, one infective is introduced into the population of size

Fig. 5. The mean, M, of the stochastic SIS model and the deterministic solution, Det I, are graphed for the probability

function and parameter values given in Fig. 4.

Fig. 6. The probability function, p�t�, for the stochastic SIS model is graphed when R0� 2, I�0�� 1, S(0)� 99,

a� 1.6, b� 0.4� c, and Dt � 0.01.
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N� 100. When the basic reproductive number R0 � 0:9, the probability of no epidemic, p0�t�,
quickly approaches 1 (see Fig. 4). The mean of the stochastic process and the deterministic so-
lution both approach 0 (see Fig. 5). When the basic reproductive number R0� 2, the probability
distribution is bimodal (Fig. 6); one mode is at zero and the second mode is approximated by the
endemic equilibrium; the endemic equilibrium is �I � 50, whereas the mean of the distribution is
i � 46:8 at t � 1000Dt � 10. If the probability at zero is neglected, the remaining probabilities
represent the quasi-stationary distribution, q�t�, which appears to be approximately normal. The
mean of the probability density p�t�;M , and the mean of q�t�;M�, are graphed in Fig. 7 and
compared to the deterministic solution, Det I. It can be seen that the mean, M, lies below the
deterministic solution and the mean of the quasi-stationary distribution, M�, is less than but much
closer than M to the deterministic solution.

The value of p0�t� initially approaches the value estimated from the random walk. In Fig. 6, the
probability that the disease is eliminated, p0�t�, is approximately 1=R0 � 0:5 for the time frame
shown �p0�1000Dt� � p0�10� � 0:51�. In Fig. 8, the initial number of infectives is increased to ®ve
individuals, then according to the estimate given by the random walk, p0�t� is approximately
�1=R0�5� 0.03125, and p0�1000Dt� � p0�10� � 0:039.

The mean and mean conditioned on non-extinction show closer agreement to the deterministic
solution as the population size and the initial number of infectives are increased. The mean and
the quasi-stationary mean for the state probabilities (with ®ve initial infectives), given in Fig. 8,
are graphed in Fig. 9. Note that there is closer agreement between the means and the deterministic
solution; however, the means are always less than the deterministic solution.

If the time were continued for a su�ciently long period, then it would be possible to observe
limt!1 p0�t�� 1 and limt!1m�t� � 0. For a population size of N� 100, absorption or complete
disease extinction did not occur in the time frame shown in Figs. 4±9. However, if the size of the

Fig. 7. The mean, M, the mean conditioned on non-extinction, M�, of the stochastic SIS model and the deterministic

solution, Det I, are graphed for the probability function and parameter values given in Fig. 6.
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population is reduced and the time frame is extended, then ultimate extinction can be observed. In
Fig. 10, N � 15 and p0�10000Dt� � p0�100� � 1. In addition, the expected duration of the epi-
demic is computed from the di�erence equations in (9) and compared to simulations, where the
time to extinction is averaged over 10 000 sample paths with Dt � 0:01. In Fig. 11, the expected
duration is graphed as a function of the initial number of infectives when N� 20 and R0 � 2. It
can be seen that the discrete-time approximation for the expected duration of the epidemic agrees

Fig. 8. The probability function, p�t�, for the stochastic SIS model is graphed when R0 � 2, I(0)� 5, S(0)� 95,

a� 1.6, b � 0:4 � c, and Dt � 0:01.

Fig. 9. The mean, M, the mean conditioned on non-extinction, M�, of the stochastic SIS model and the deterministic

solution, Det I, are graphed for the probability function and parameter values given in Fig. 8.
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with that obtained from the continuous-time model. Also, note that as the initial number of in-
fectives increases, the expected duration approaches a constant. In Table 2, the expected duration
when I�0� � 1 is calculated for various values of N when using formula (9) and compared to the

Fig. 10. The probability function, p�t�, for the stochastic SIS model is graphed when R0 � 2, I(0)� 1, S�0� � 14,

a � 1:6, b � 0:4 � c, and Dt � 0:01.

Fig. 11. The expected duration of an epidemic when N� 20, R0� 2, a� 1.6, and b� 0.4� c, as a function of the initial

number of infectives, I(0). The exact values for the expected duration (formula (9)) are graphed for the SIS model and

the approximate values calculated from an average of 10 000 sample paths when Dt� 0.01. The approximate duration is

calculated for the SIR model and the SIS model with variable population size when r� 0.25, K� 20, and initial total

population size N(0)� 20.
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approximate duration calculated from an average of 10 000 sample paths. There is close agree-
ment between the exact and approximate duration and it is evident that there is a large increase in
the expected duration with N.

In the next section, the SIR deterministic and stochastic models with constant population size
are analyzed.

3. SIR model with constant population size

3.1. Deterministic SIR

In the SIR model, individuals develop an immunity to the disease, births and deaths are in-
cluded but such that the population size remains constant. The discrete-time deterministic SIR
model has the following form:

S�t � Dt� � S�t��1ÿ k�t�Dt� � �N ÿ S�t��bDt;

I�t � Dt� � I�t��1ÿ bDt ÿ cDt� � k�t�DtS�t�; �10�
R�t � Dt� � R�t��1ÿ bDt� � cDtI�t�;

where t � nDt; n � 0; 1; 2; . . . ; S�0�; I�0� > 0;R�0�P 0; S�0� � I�0� � R�0� � N ; a > 0; b > 0;
and c > 0. The conditions (i)±(iv) on the force of infection are assumed to hold. In this model,
recovery leads to immunity. Newborns are susceptible.

It is clear that conditions (i) and (iv) imply solutions are non-negative and
S�t� � I�t� � R�t� � N for all time. It can also be shown that the basic reproductive number de-
termines the asymptotic behavior in some cases.

Theorem 2. (i) If R06 1, then solutions to (10) approach the disease-free state

lim
t!1

I�t� � 0; lim
t!1

R�t� � 0; lim
t!1

S�t� � N :

(ii) If R0 > 1, then there exists a unique positive endemic equilibrium and no cycles of period two
exist. For the force of infection given by (2), the positive equilibrium is locally asymptotically
stable.

Proof. Let the right-hand side of I�t � Dt� in (10) be denoted as g:

g�I ;R� � I�1ÿ bDt ÿ cDt� � k�t�Dt�N ÿ I ÿ R�:

Table 2

The expected duration of an epidemic for the SIS model as a function of N, R0 � 2; I�0� � 1; a � 1:6; b � 0:4 � c

N 5 10 15 20 25

Exact 3.68 8.26 17.73 39.01 88.68

Approximate 3.69 8.20 17.83 39.44 90.93
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For case (i), R06 1, then

g�I ;R�6 I�1ÿ bDt ÿ cDt� � aDtI�N ÿ I ÿ R�=N 6 I � I�aÿ bÿ c�Dt6 I :

Thus, fI�t�g is a decreasing sequence bounded below by zero and has a limit �I. Also, it follows
that fR�t�g has a limit given by c�I=b. The limit is a ®xed point of g and must satisfy, g��I ; c�I=b� � �I
or �I is a solution to

�bDt � cDt�I � k�I�Dt�N ÿ I ÿ cI=b� � h�I�: �11�
Now, h�0� � 0; h0�0� � aDt, and h00�I� < 0 which implies h�I� < aDtI for I > 0. Thus,
h�I� < aDtI 6 �bDt � cDt�I for I > 0. The only ®xed point satisfying (11) is the origin; solutions
converge to the disease-free state.

For case (ii), where R0 > 1, the endemic equilibrium also satis®es (11). In this case,
h0�0� � aDt > �bDt � cDt�. In addition, h�0� � 0 and h�N� < 0. Thus, h�I� must cross the line
(bDt � cDt�I at least once. Uniqueness follows from the properties of k�I� as in the proof of
Theorem 1.

Let f �S; I� and g�S; I� denote the right sides of S�t � Dt� and I�t � Dt� in (10), respectively. The
results of McCluskey and Muldowney [20] can be applied to show there do not exist any cycles of
period 2. Cycles of period 2 do not exist if the matrix, I� J is strictly diagonally dominant for
S � I 2 �0;N � excluding the equilibrium I � 0 and S � N [20]. Matrix I is the identity matrix and
matrix J is the 2� 2 Jacobian matrix of F � �f ; g�

I� J � 2ÿ k�I�Dt ÿ bDt ÿ k0�I�DtS

k�I�Dt 2ÿ bDt ÿ cDt � k0�I�DtS

 !
:

Note from conditions (i)±(iv) that k�I�Dt6 aDtI=N 6 1 and k0�I�DtS6 aDtS=N < 1. Diagonal
dominance in the ®rst row of I + J follows from

2ÿ k�I�Dt ÿ bDt ÿ k0�I�DtS P 2ÿ bDt ÿ aDt�S � I�=N > 2ÿ bDt ÿ aDt P 0:

Diagonal dominance in the second row follows from

2ÿ bDt ÿ cDt � k0�I�DtS ÿ k�I�Dt P 2ÿ bDt ÿ cDt ÿ aDtS=N > 0:

The matrix I� J is strictly row diagonally dominant for all S � I 2 �0;N �; S 6� N and hence, there
do not exist any cycles of period 2.

Next, local stability of the positive equilibrium for the force of infection given by (2) is shown.
The positive equilibrium is given by

�S � N
R0

; �I � b
a

N�R0 ÿ 1�:

The Jacobian matrix evaluated at the positive equilibrium is

Je � 1ÿ bDtR0 ÿ aDt=R0

bDt�R0 ÿ 1� 1ÿ bDt ÿ cDt � aDt=R0

� �
:

For local stability, the Jury conditions must be satis®ed; the trace and determinant must satisfy
the three conditions:
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trace�Je� < 1� det�Je�; det�Je� < 1; ÿtrace�Je� < 1� det�Je�
[23]. It is tedious but straightforward to show that the trace and determinant of Je satisfy the ®rst
two inequalities when R0 > 1. The third inequality is satis®ed if

aDt < �4ÿ bDt�bDt � cDt�� bDt � cDt
bDt�2ÿ bDt ÿ cDt� : �12�

The right side of the above inequality is greater than 3/2. Hence, it follows from condition (iv) that
the third inequality is satis®ed. �

Weaker conditions on the force of infection may result in periodic solutions. When R0 > 1 and
inequality (12) is not satis®ed, the model with the force of infection (2) exhibits periodic solutions
[15].

The assumption b > 0 is important to the existence of the endemic state. If b � 0 and
k�I� � aI=N or k�I� � aI, then limt!1 I�t� � 0 regardless of the magnitude of R0 [15]. The con-
tinuous-time version of this model with mass action incidence �k�I�S � aIS� and b � 0 is the
classical SIR model studied by Kermack and McKendrick [24].

3.2. Stochastic SIR

The discrete-time stochastic SIR model is a Markov chain with ®nite state space. The analo-
gous continuous-time model is a Markov jump process. The stochastic SIR model is a bivariate
process dependent on the random variables I and R, the number of infected and immune in-
dividuals, respectively. The stochastic SIR has a joint probability function,
pir�t� � ProbfI�t� � i; R�t� � rg, where i; r � 0; 1; 2; . . . ;N and 06 i� r6N .

Let PirDt � k�i��N ÿ iÿ r�Dt denote the probability of a new infective in time Dt:

ProbfI�t � Dt� � i� 1; R�t � Dt� � r j I�t� � i; R�t� � rg � PirDt;

where k�i� satis®es conditions (i)±(iv). Let ciDt; biDt, and brDt denote the probability of recovery of
an infective and the probability of death of an infective or of an immune individual, respectively:

ProbfI�t � Dt� � iÿ 1; R�t � Dt� � r � 1 j I�t� � i; R�t� � rg � ciDt;

ProbfI�t � Dt� � iÿ 1; R�t � Dt� � r j I�t� � i; R�t� � rg � biDt;

ProbfI�t � Dt� � i; R�t � Dt� � r ÿ 1 j I�t� � i; R�t� � rg � brDt:

Each death is accompanied by a birth so that the population size remains constant. For example,
a death of an immune individual is accompanied by a birth of a susceptible.

The di�erence equations satis®ed by the joint probability pir�t� are

pir�t � Dt� � piÿ1;r�t�Piÿ1;rDt � pi�1;rÿ1�t�cDt�i� 1� � pi�1;r�t�bDt�i� 1�
� pi;r�1�t�bDt�r � 1� � pir�t��1ÿPirDt ÿ ciDt ÿ b�i� r�Dt�;

p0r�t � Dt� � p0r�t�;
where i; r � 0; 1; . . . ;N ; i� r6N and pir�t� � 0 if i; r; 62 �0;N �. To ensure that the transition
probabilities are positive and bounded by one, it is required that PirDt � ciDt � b�i� r�Dt6 1 for
i� r � 0; 1; . . . ;N and i� r6N . The inequality is satis®ed if Dt is chosen su�ciently small. The
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discrete-time stochastic model is a Markov chain, but in this case, the transition matrix cannot be
expressed in a simple form. There is a single absorbing state at the origin, I � 0 and R � 0.

3.2.1. Mean and quasi-stationary mean
The quasi-stationary distribution is de®ned by

qir�t� � pir�t�
1ÿPN

r�0 p0r�t�
for i � 1; . . . ;N ; r � 0; . . . ;N and i� r6N . The corresponding di�erence equations for qir�t� are
given by

qir�t � Dt��1ÿ �b� c�q1�t�Dt� � qiÿ1;r�t�Piÿ1;rDt � qi�1;rÿ1�t�cDt�i� 1� � qi�1;r�t�bDt�i� 1�
� qi;r�1�t�bDt�r � 1� � qir�t��1ÿPirDt ÿ ciDt ÿ b�i� r�Dt�

for i � 1; . . . ;N ; r � 1; . . . ;N , and i� r6N ; where qi�t� �
PNÿi

r�0 pir�t�=�1ÿ
PNÿi

r�0 pir�t��.
Note that the di�erence equations for the quasi-stationary distribution are similar to those for

the SIS model. In addition, the mean and the mean conditioned on non-extinction for I satisfy
di�erence equations similar to those given for the SIS model.

Let mI�t� �
PN

i;r�0 ipir�t� and m�I�t� �
PN

i�1;r�0 iqir�t� denote the mean number of infectives and
the mean conditioned on non-extinction, respectively. In each case, the sum over i and r is un-
derstood to mean i� r6N . Then

mI�t � Dt� ÿ mI�t� �
XN

i;r�0

PirDt
i

�
ÿ cDt ÿ bDt

�
ipir�t� � �b� c�Dt�R0nI�t� ÿ 1�mI�t�; �13�

m�I�t � Dt��1ÿ �b� c�q1�t�Dt� ÿ m��t� � �b� c�Dt�R0n
�
I�t� ÿ 1�m�I�t�;

where

nI�t� �
PN

i;r�0 pir�t�Pir

a
PN

i;r�0 ipir�t�
and n�I�t� �

PN
i;r�0 qir�t�Pir

a
PN

i;r�0 iqir�t�
:

Note that Pir�t�=i6 as=N , where s � N ÿ iÿ r so that nI�t� < 1. When R06 1; it follows from
(13) that fmIg is a monotone decreasing sequence which converges to 0. It can be seen from (13)
that there are two steady-state solutions for the mean, the zero solution and the solution of

nI�t� � 1

R0

:

There is a similar relation to a random walk as in the stochastic SIS model when the initial
number of infectives is small and the population size is large. Initially, the epidemic fades out
quickly with probability �1=R0�a when R0 > 1. However, it persists with probability, 1ÿ �1=R0�a,
where a is the initial number of infectives.

Approximations are given for the expected time to extinction from quasi-stationarity for the
continuous-time SIR model with standard incidence by N�asell [13]. In the numerical examples, we
approximate the expected time to extinction for the corresponding discrete-time model.

For non-endemic SIR models, an important problem is to estimate the total size of the epidemic
or the ®nal size distribution. Since our models are endemic �b > 0�, we do not investigate this
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problem. Some references for the ®nal size distribution in non-endemic, discrete and continuous-
time stochastic SIR models are given in the list of Refs. [25±28].

3.3. Numerical examples

In the numerical examples, it is assumed that the incidence rate has the form of the standard
incidence, k�t�S�t� � aI�t�S�t�=N . One initial infective is introduced into a population of size

Fig. 12. The probability function for the number of infectives I�t� in the stochastic SIR model is graphed when R0 � 2,

I�0�� 1, S(0)� 99, R(0)� 0, a � 1:6, b � 0:4 � c, and Dt � 0:01.

Fig. 13. The mean, M, the mean conditioned on non-extinction, M�, of the stochastic SIR model and the deterministic

solution, Det I, are graphed for the probability function and parameter values given in Fig. 12.

L.J.S. Allen, A.M. Burgin / Mathematical Biosciences 163 (2000) 1±33 21



N � 100; R0 � 2; and Dt � 0:01. The probability function for the number of infectives is
graphed in Fig. 12, pi�t� �

PNÿi
r�0 pir�t�. The probability function and its mean are calculated from

10 000 individual sample paths. The shape of the probability functions of the SIS and SIR models
are similar; both are bimodal, with one mode at zero and one close to the endemic equilibrium of
the deterministic model, �I � 25. Neglecting the probability at zero, the quasi-stationary distri-
bution appears approximately normal. Initially, the disease is eliminated with probability close to
1=R0 � 0:5. The deterministic solution of the SIR model is graphed with the mean and the mean
conditioned on non-extinction in Fig. 13. Both means lie below the deterministic solution, al-
though the mean conditioned on non-extinction is closer to the deterministic solution.

The expected duration of the epidemic is calculated numerically from an average of 10 000
sample paths. Fig. 14 is a graph of the expected duration as a function of N for R0 equal to 2, 3
and 4 with one initial infective. It can be seen that the expected duration appears to increase
exponentially with N. The expected duration for a population of size N � 20 and R0 � 2 as a
function of the initial number of infectives is graphed in Fig. 11 and compared to that of the SIS
model. Since individuals recover in an SIR model and are not reinfected, the duration is much
shorter for an SIR model than for an SIS model with the same parameter values.

4. SIS model with variable population size

In the SIS model with variable population size, it is assumed that the total population size is not
constant but varies with time, N � N�t�. Since the total population size satis®es N�t� � S�t� � I�t�,
the model has two independent dynamic variables. The deterministic and stochastic SIS models
are described in the next sections.

Fig. 14. The approximate expected duration of an SIR epidemic when I(0)� 1, b � 0:4 � c and R0 � 2, 3, and 4 as a

function of the total population size N. The duration is calculated from an average of 10 000 sample paths when

Dt � 0:01.
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4.1. Deterministic SIS

The following di�erence equation models the growth of the population:

N�t � Dt� � N�t��f �N�t�� � 1� � N�t�F �N�t�� � g�N�t��; 0 < N�0� < K; �14�
where F �N� � f �N� � 1 and NF �N� � g�N�. The functions f and g in (14) satisfy the following
three conditions:

(v) f �N�; g�N� 2 C1�0;K�; f �N� > 0 for N 2 �0;K�;
(vi) g�0� � 0 and g�K� � K, and
(vii) g0�0� > 1; g0�N� > 0 for N 2 �0;K�.

Thus, F �N�N � g�N� implies F �K� � 1 and f �K� � 0. In addition, g�N� > N for N 2 �0;K�. Eq.
(14) has two ®xed points, �N � 0 and �N � K. Since the population is initially below K, conditions
(v)±(vii) guarantee that solutions N�t� increase monotonically to K, the carrying capacity. Such
types of conditions were imposed in di�erential equation epidemic models with variable popu-
lation size (e.g., [29±32]). Two examples satisfying the above restrictions are the di�erence
equations for logistic growth:

N�t � Dt� � N�t� �rDt � 1�K
K � rDtN�t� ; r > 0 �15�

or

N�t � Dt� � N�t� 1

�
� rDt ÿ N�t�rDt�

K

�
; 0 < rDt < 1:

The deterministic SIS model with variable population size has the form:

S�t � Dt� � S�t��F �N�t�� ÿ k�t�Dt� � �bDt � cDt�I�t�;
I�t � Dt� � I�t��F �N�t�� ÿ bDt ÿ cDt� � k�t�DtS�t�; �16�

N�t � Dt� � N�t�F �N�t��;
where F �N�t�� � 1� f �N�t��; bDt is the per capita number of births, bDt ÿ f �N�t�� is the per
capita number of deaths in time Dt; S�0� > 0; I�0� > 0, and N�0� � S�0� � I�0� < K.

Conditions (i)±(iv) are assumed to hold for the force of infection, but conditions (i)±(iii) are
modi®ed to account for the changing population size. Let i�t� � I�t�=N�t�. It is assumed that the
force of infection is a function of the proportion of infectives, i�t�, rather than the number of
infectives, I�t�. The three modi®ed conditions are stated in terms of the proportion, i�t�:
�i�0 k�t� � k�i�t��6 ai�t�; where i�t� � I�t�=N�t�.
�ii�0 k�i� 2 C2�0; 1�; dk�i�=di > 0; and d2k�i�di26 0 for i 2 �0; 1�.
�iii�0 k�i� ji�0� 0 and k0�i� ji�0� a.

With these restrictions, the incidence rate may take the form of the standard incidence given in (2)
or the form in (3). However, the mass action incidence rate is not possible,
k�t�S�t� 6� constant I�t�S�t�. Also, note that the restrictions �i�0±�iii�0 and (iv)±(vii) imply that so-
lutions to (16) are non-negative.

The following theorem gives su�cient conditions that show the basic reproductive number
determines asymptotic behavior.
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Theorem 3. (i) If R0 < 1, then solutions to (16) satisfy

lim
t!1

I�t� � 0; lim
t!1

S�t� � K:

(ii) If R0 > 1 and if the function h�x� � �1ÿ bDt ÿ cDt�x� �1ÿ x�k�x�Dt defined on [0, 1] has a
unique positive fixed point x�; 0 < x� < 1; and 0 < x� < xM , where h�xM��max06 x6 1 h�x�, then
solutions to (16) satisfy

lim
t!1

I�t� � �I > 0; lim
t!1

S�t� � �S > 0;

where �I � x�K and �S � �I � K.

The conditions imposed on h in part (ii) of Theorem 3 seem restrictive but it can be easily
shown that they are satis®ed by the force of infection k�i�t�� � ai�t�. In this case,
x� � �aÿ bÿ c�=a <minf1; �1� �aÿ bÿ c�Dt�=�2aDt� � xMg.

Proof. The di�erence equation for I�t� can be expressed in terms of proportions, i�t� � I�t�=N�t�
and s�t� � S�t�=N�t� � 1ÿ i�t�

i�t � Dt� � N�t�
N�t � Dt� �i�t��f �N�t�� � 1ÿ bDt ÿ cDt� � k�i�t��Dt�1ÿ i�t���:

For case (i), let � > 0 be chosen such that 0 < aDt=�cDt � bDt ÿ �� < 1. Since N�t� approaches K
and f �N�t�� approaches f �K� � 0 as t!1, choose t su�ciently large such that t P T implies
0 < f �N�t�� < �. Then for t P T ,

i�t � Dt�6 N�t�
N�t � Dt� �i�t��1� �ÿ bDt ÿ cDt� � aDt�1ÿ i�t���

6 i�t��1� aDt ÿ bDt ÿ cDt � �� ÿ aDt�i�t��26 i�t�:
The sequence fi�t�g is monotone decreasing, bounded below by zero and must converge to a ®xed
point of

h�i� � i�1ÿ bDt ÿ cDt� � k�i�Dt�1ÿ i�: �17�
Note that

h0�i� � 1ÿ bDt ÿ cDt � k0�i�Dt�1ÿ i� ÿ k�i�Dt;

h00�i� � k00�i�Dt�1ÿ i� ÿ 2k0�i�Dt;

h00�i� < 0 for i 2 �0; 1�, and h0�0� � 1� aDt ÿ bDt ÿ cDt < 1. It follows that h�i� < i for i 2 �0; 1�.
The only ®xed point of h for R0 < 1 is 0. Hence, i�t� converges to 0.

Let 0 < �1 < 1 and �2 > 0. Consider the function

h�x� � �1ÿ �1�x�1ÿ bDt ÿ cDt� � �1ÿ �1��1ÿ xÿ �1�k�x�Dt
� h�x� ÿ �1�h�x� � �1ÿ �1�k�x�Dt�6 h�x�:

Also, the function

h�x� � x�1ÿ bDt ÿ cDt � �1� � �1ÿ x�k�x�Dt � h�x� � �1x P h�x�;
where h is de®ned in (17). Note that h�0� � 0 � h�0� � 0.
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The function h has the property that h0�i� � 0 for at most a single value of i 2 �0; 1�.
Thus, h is strictly increasing for x < xM and strictly decreasing for x > xM . When R0 > 1 so
that h0�0� > 1, the solution x�t� to x�t � Dt� � h�x�t�� converges monotonically to x� for
t > 0.

For case (ii), choose �1 su�ciently small such that h and h have unique positive ®xed points x
and x, respectively, x < x < 1 such that jx� ÿ xj < �2 and jx� ÿ xj < �2. In addition, choose �1

su�ciently small such that h�x� and h�x� are strictly increasing for 0 < x < x, where x is some point
x < x < xM , h�x� > x for 0 < x < x, h�x� < x for x > x, h�x� > x for 0 < x < x, h�x� < x for x > x,
and h�x� < xM for x 2 �0; 1� (possible since h and k are C1�0; 1� and h�x� < xM ). Thus,
limt!1 h�x�t�� � x and limt!1 h�x�t�� � x.

Choose t su�ciently large such that t P T implies 0 < f �N�t�� < �1, 1ÿ i�t� ÿ s�t� < �1, and
1ÿ �1 < N�t�=N�t � Dt�. Then for t P T

h�i�t��6 i�t � Dt�6 h�i�t��:
If x�T � � i�T � � y�T �, then

x�T � Dt� � h�x�T �� � h�i�T ��6 i�T � Dt�6 h�i�T �� � h�y�T �� � y�T � Dt� < xM :

Since h0�x� > 0 for x < xM , then

x�T � 2Dt� � h�x�T � Dt��6 h�x�T � Dt��6 h�i�T � Dt�� � i�T � 2Dt�
6 h�y�T � Dt��6 h�y�T � Dt�� � y�T � 2Dt� < xM :

Continuing in this manner,

x�T � nDt� � h�x�T � �nÿ 1�Dt��6 i�T � nDt�6 h�y�T � �nÿ 1�Dt�� � y�T � nDt�

for n � 2; . . .. Since x�t� converge to x and y�t� converges to x, it follows that

x� ÿ �26 x6 lim inf
t!1

i�t�6 lim sup
t!1

i�t�6 x6 x� � �2:

Since �2 can be made arbitrarily small, it follows that limt!1 i�t� � x�. �

4.2. Stochastic SIS

4.2.1. Model
The discrete-time stochastic SIS model with variable population size is formulated as a Markov

chain. The stochastic process is bivariate. Let I and N denote the random variables for the
number of infectives and total number of individuals. Let the joint probability function be de-
noted as

pin�t� � ProbfI�t� � i; N�t� � ng:
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There are ®ve di�erent transition probabilities in the discrete-time model:

ProbfI�t � Dt� � i� 1; N�t � Dt� � n j I�t� � i; N�t� � ng � PinDt;

ProbfI�t � Dt� � iÿ 1; N�t � Dt� � n j I�t� � i; N�t� � ng � ciDt;

ProbfI�t � Dt� � i; N�t � Dt� � n� 1 j I�t� � i; N�t� � ng � bnDt;

ProbfI�t � Dt� � iÿ 1; N�t � Dt� � nÿ 1 j I�t� � i; N�t� � ng � �bDt ÿ f �n��i;
ProbfI�t � Dt� � i; N�t � Dt� � nÿ 1 j I�t� � i; N�t� � ng � �bDt ÿ f �n���nÿ i�

for i6 n, i; n � 0; 1; . . . ;M , where Pin � k�i=n��nÿ i�, i=n is the proportion of infectives, and f �n�
is the function de®ned in the deterministic model (14). Assumptions (i)0±(iii)0, and (iv)±(vii) are
assumed to hold. The population size may increase above carrying capacity, K; thus, the de®nition
of f needs to be extended to n > K and in addition, the population size should be bounded. Two
more conditions are made for the stochastic model:

(viii) There exists M > K such that f 2 C1�0;M �; f �n� < 0 for K < n6M .
(ix) The probability of a birth, ProbfN�t � Dt� � n� 1 jN�t� � ng � 0 for n P M .

Conditions (viii) and (ix) assume that when K < n6M , the probability of a death is greater than
the probability of a birth and that M is a bound on the population size.

The di�erence equations for the joint probability function pin�t� are given by

pin�t � Dt� � piÿ1;n�t�Piÿ1;nDt � pi�1;n�t�c�i� 1�Dt � pi;nÿ1�t�b�nÿ 1�Dt
�pi�1;n�1�t��bDt ÿ f �n� 1���i� 1� � pi;n�1�t��bDt ÿ f �n� 1���n� 1ÿ i�
�pin�t��1ÿPinDt ÿ ciDt ÿ 2bnDt � f �n�n�;

p00�t � Dt� � p00�t�
for i6 n6M ; i; n � 0; 1; . . . ;M and pin�t� � 0 for i; n 62 �0;M �. The probabilities must satisfy
PinDt � ciDt � 2bnDt ÿ f �n�n6 1 for 06 i6 n; i; n � 0; 1; . . . ;M which is possible if Dt is su�-
ciently small.

The only absorbing state is the state I � 0 and N � 0; eventually, the disease is eliminated and
the population becomes extinct. However, it may take a long time for total population extinction
to occur, especially for large initial values and large carrying capacity K.

4.2.2. Mean and quasi-stationary mean
The quasi-stationary probability distribution is de®ned by qin�t� � pin�t�=

�1ÿPM
n�0 p0n�t�� for i; n � 1; 2; . . . ;M ; i6 n. The probabilities qin�t� satisfy the di�erence equa-

tions

qin�t � Dt� 1

"
ÿ
PM

n�1 p1n�t��bDt � cDt ÿ f �n��
1ÿPM

n�0 p0n�t�

#
� qiÿ1;n�t�Piÿ1;nDt � qi�1;n�t�c�i� 1�Dt � qi;nÿ1�t�b�nÿ 1�Dt
�qi�1;n�1�t��bDt ÿ f �n� 1���i� 1� � qi;n�1�t��bDt ÿ f �n� 1���n� 1ÿ i�
�qin�t��1ÿPinDt ÿ ciDt ÿ 2bnDt � f �n�n�

for i; n 2 f0; 1; . . . ;Mg; i6 n. The di�erence equations for the quasi-stationary distribution di�er
from the SIS model with constant population size due to the presence of the term f �n�.
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Di�erence equations for the mean and the mean conditioned on non-extinction also di�er from
those of the stochastic SIS model with constant population size. The mean and mean conditioned
on non-extinction satisfy the di�erence equations:

m�t � Dt� ÿ m�t� �
XM

i;n�0

PinDt
i

�
ÿ bDt ÿ cDt � f �n�

�
ipin�t� � �b� c�Dt�R0nI�t� ÿ 1�m�t�;

m��t � Dt� 1

"
ÿ
PM

n�1 p1n�t��bDt � cDt ÿ f �n��
1ÿPM

n�0 p0n�t�

#
ÿ m��t� � �b� c�Dt�R0n

�
I�t� ÿ 1�m��t�;

where

nI�t� �
PM

i;n�0�PinDt � f �n�i�pin�t�
aDt

PM
i;n�0 ipin�t�

;

n�I�t� �
PM

i;n�0�PinDt � f �n�i�qin�t�
aDt

PM
i;n�0 iqin�t�

;

and the sum is over indices i6 n6M . For this stochastic process, the threshold R0 may not
determine the asymptotic behavior of the mean. Another threshold relates the random walk to the
probability of disease elimination.

Initially, if there are a small number of infectives and a large population size, the probability of
disease elimination can be approximated using the theory of random walks. Suppose s � n0,
where n0 is the initial population size, ProbfN�0� � n0g � 1, then probability of infection
is Pin0

Dt � k�i=n0��n0 ÿ i�Dt � aiDt and the probability of recovery or death is ciDt�
�bDt ÿ f �n0��i. From the theory of random walks [14], the probability of ultimate absorption or
disease elimination is approximately

cDt � bDt ÿ f �n0�
aDt

� �a

;

where a is the initial number of infectives. If n0 < K, then f �n0� > 0 and if n06K, then f �n0�P 0.
If the initial population size is less than the carrying capacity, n0 < K, then the probability that the
disease is eliminated is less than in a population of constant size. In other words, a growing
population is more likely to experience an epidemic than a population that has stabilized at a
constant population size. However, in a population that is declining, n0 > K, the probability that
the disease is eliminated is greater than in a population that has stabilized.

A possible reason for the di�erence between the constant and variable population size models
is due to the death rate of infectives which changes with the population size. When the pop-
ulation size is below carrying capacity, births exceed deaths, and the length of infectivity in-
creases from 1=�cDt � bDt� to 1=�cDt � bDt ÿ f �n�� �f �n� > 0�: This longer period of infectivity
due to a decreased death rate may result in more susceptibles becoming infective at the outset of
an epidemic.
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4.3. Numerical examples

Numerical examples are simulated for a growing population; the initial population size is below
carrying capacity. In these examples, population growth follows the logistic equation (15):

f �n� � rDt�K ÿ n�
K � rDtn

and the force of infection is k�i=n� � ai=n. The time step is Dt � 0:002, so that the actual time
frame extends from 0 to time �Dt� � 10000Dt � 20: The probabilities and means are calculated
from 10 000 individual sample paths.

In the ®rst example, one infective is introduced into a population of size n � 20 with carrying
capacity K � 100, maximum population size of M � 200, a basic reproductive number R0 � 2,
and parameter values a � 1:5, b � 0:5, c � 0:25 and r � 0:25. In Figs. 15 and 16 the marginal
probabilities for I�t� and N�t� are given. The probability function for infectives is bimodal, one
mode is at zero and the second mode is the quasi-stationary mean which is near the endemic
equilibrium of the deterministic model. The probability function of the total population size is
unimodal for the time frame shown; there is one mode approaching carrying capacity, K � 100.
The probability that the disease is eliminated approaches a value close to that predicted by the
random walk in the time frame shown. The estimate for disease elimination in the random walk is
given by

bDt � cDt ÿ f �n0�
aDt

� 0:367;

which is close to the value of p0�20� � ProbfI�20� � 0g in Fig. 15. Initially, the probability of
disease elimination is less than in the model with a constant population size due to the decreased

Fig. 15. The probability function for the number of infectives I�t� for the SIS model with variable population size is

graphed when R0 � 2, I(0)� 1, S(0)� 19, K� 100, a � 1:5, b � 0:5, c � 0:25, r � 0:25, M � 200, and Dt � 0:002.

28 L.J.S. Allen, A.M. Burgin / Mathematical Biosciences 163 (2000) 1±33



death rate of infectives. The mean and the mean conditioned on non-extinction for the probability
distributions of I�t� and N�t� are graphed in Fig. 17.

In the next example, the carrying capacity is reduced to K � 15, the initial conditions are
I�0� � 1 and S�0� � 4, and the parameter values are r � 0:25, a � 1:6, b � 0:4, c � 0:4, and
Dt � 0:002. The graph in Fig. 18 can be compared to Fig. 10. For a small carrying capacity,

Fig. 16. The probability function for the total population size N�t� is graphed for the SIS model with variable pop-

ulation size of the parameter values given in Fig. 15.

Fig. 17. The mean number of infectives, Mean I, the mean total population size, Mean N, the mean conditioned on

non-extinction for infectives Mean �I , and the deterministic solutions, Det I and Det N, for the SIS model with variable

population size are graphed for the probabilities and parameter values given in Figs. 15 and 16.
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K � 15, and for a longer time frame, time �Dt� � 50000�0:002� � 100, ultimate disease elimina-
tion can be observed. In Fig. 18, the disease is eliminated at a faster rate than in the SIS model
with constant population size. This faster rate is probably due to the small population size and the
small number of susceptibles, S�0� � 4 in Fig. 18 as opposed to S�0� � 14 in Fig. 10. In this
example, it can also be observed that the total population size will eventually approach 0. In
Fig. 19, the probability function for the total population size, N�t�, shows that as time increases,
the probability that the population size is 0 also increases.

Fig. 19. The probability function for the total population size N�t� for the SIS model with variable population size is

graphed for the parameter values given in Fig. 18.

Fig. 18. The probability function for the number of infectives I�t� for the SIS model with variable population size is

graphed when R0 � 2, I(0)� 1, S�0� � 4, K� 15, a� 1.6, b� 0.4� c, r� 0.25, M� 45, and Dt� 0.002.
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In the last example, the expected duration of the epidemic is estimated by calculating the av-
erage duration from 10 000 sample paths when K � 20, R0 � 2, and N�0� � K. In Fig. 11, the
expected duration is compared to the SIS model with constant population size when the initial
number of infectives is varied from 1 to 20. It can be seen that the expected duration is shorter for
the variable population size model. This shortened duration may be due in part to the fact that the
total size in the variable population size model is on the average less than K;N < K, but in the
constant population size model N � K.

5. Summary

Discrete-time deterministic and stochastic models are formulated and analyzed for three dif-
ferent models: SIS model with constant population size, SIS model with variable population size,
and SIR model with constant population size. These discrete-time models may be directly ap-
plicable to particular diseases (e.g., [4,33]) or may be considered as approximations to the more
well-known continuous-time models. The discrete-time epidemic models are new formulations
which generalize the form of the force of infection.

For the deterministic cases, Theorems 1±3 state asymptotic results for the three models. The
basic reproductive number R0 determines whether the disease is eliminated or persists. In the case
of persistence, the endemic equilibrium depends on the form of the force of infection.

The discrete-time stochastic epidemic models are formulated as Markov chains which may be
considered approximations to the continuous-time Markov jump processes. Restrictions are put
on the size of the time step to ensure that the models give true probability distributions.

In the stochastic models, the probability of disease elimination ultimately approaches 1, in-
dependent of the value of the basic reproductive number. However, as the population size in-
creases, the time until absorption also increases. In these cases, the quasi-stationary distribution is
signi®cant. Di�erence equations for the mean and quasi-stationary mean are obtained. The nu-
merical examples illustrate the form of the the probability distribution and the quasi-stationary
distribution for the number of infectives. The probability distribution is bimodal when R0 > 1
and the initial number of infectives is small. One mode is at I � 0. The second mode is the mean
of the quasi-stationary distribution which is close to the deterministic endemic equilibrium. The
shape of the quasi-stationary distribution appears to be approximately normal for R0 > 1 and N
su�ciently large, which agrees with continuous-time stochastic SIS and SIR models with standard
incidence studied by N�asell [11±13]. In other examples, the behavior of the SIS Markov chain
model agrees with that of the continuous-time SIS Markov jump process: the relation to a random
walk and the expected duration of the epidemic. West and Thompson [5] also showed agreement
between the behavior of the discrete and continuous-time stochastic SI models.

There is some distinction between the behavior of the SIS stochastic model with variable
population size and the model with constant population size. The expected duration is less and the
rate of convergence to extinction is faster in the variable population size model as illustrated in
Figs. 10, 11 and 19. In the SIS model with variable population size, when the population size is
less than the carrying capacity, births exceed deaths and the length of infectivity increases from
1=�cDt � bDt� to 1=�cDt � bDt ÿ f �n�� �f �n� > 0 when n > K�. However, the reverse occurs when
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the population size is greater than the carrying capacity, deaths exceed births and the length of
infectivity decreases since f �n� < 0 when n > K.

There remain some open questions in regard to the behavior of the epidemic models. The global
behavior of the deterministic SIR model in the case R0 > 1 needs to be veri®ed. In addition,
analytical approximations to the quasi-stationary distribution and the expected duration of the
epidemic are needed for the stochastic SIR model and the SIS model with variable population size
(see e.g., [11±13]).
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